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H I G H L I G H T S

� Predicting miRNA target genes is one of the important issues in bioinformatics.
� The RRSM has been proposed for miRNA target prediction in the literature.
� RRSM with a data-dependent threshold is proposed in this study.
� The new method can select more experimentally validated targets than RRSM.
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a b s t r a c t

Predicting miRNA target genes is one of the important issues in bioinformatics. The correlation analysis is
a widely used method for exploring miRNA targets through microarray data. However, the experimental
results show that correlation analysis leads to large false positive or negative results. In addition, the
correlation analysis is not appropriate when multiple miRNAs simultaneously regulate a gene. Recently,
the relative R squared method (RRSM) has been proposed for miRNA target prediction, which is shown to
be superior to some existing methods. To adopt the RRSM, we need first to set thresholds to select a
proportion of potential targets. In the previous studies, the threshold is set to be fixed, which does not
depend on the characteristic of a gene. Due to the diversity of the functions of genes, a data-dependent
threshold may be more feasible in real data applications than a data-independent threshold. In this
study, we propose a threshold selection method which is based on the distribution of the relative R
squared statistic. The proposed method is shown to significantly improve the previous prediction results
by selecting more experimentally validated targets.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Predicting target genes is one of the important research topics in
bioinformatics, such as discovering microRNA (miRNA) interactions
or transcription factor binding sites. Recent works have revealed that
miRNAs play important roles in various biological processes (Bartel,
2004; Ambros, 2004; Broderick and Zamore, 2011). In the previous
study, the correlation analysis is a widely used method for exploring
target genes of a miRNA through microarray data (van Dongen et al.,
2008; Bartonicek and Enright, 2010). However, experimental results
show that correlation analysis does not lead to accurate results
(Huang et al., 2007a, 2007b; Wang and Li, 2009; Hsieh and Wang,
2011). These previous studies indicated that for many miRNAs, the
correlation coefficient of the microarray expression of a miRNA and
that of its confirmed target is nearly zero. When the correlation
coefficient is not high, it is hard to use any standard statistical
approaches to explore miRNA targets because there are no significant

statistical evidence for a relationship between a miRNA and its true
targets in terms of the conventional statistical methods. In addition,
the correlation analysis is not appropriate to be used when multiple
factors simultaneously function on a target. In many biological
applications, it is more appropriate to build a statistical model, such
as a regression model, than using the correlation analysis to analyze
the data (Wang and Li, 2009; Lu and Wang, 2012).

Recently, the relative R squared method (RRSM), which is devel-
oped based on a regression model, has been proposed for target gene
prediction, and it is shown to be superior to some existing methods
(Wang and Li, 2009; Hsieh and Wang, 2011; Wang et al., 2011). RRSM
is proposed to analyze data from a relative instead of from the
absolute statistical point of view. In biological systems, it is usual that
a gene is simultaneously regulated by multiple miRNAs. To describe
the relationship between the expression profiles of miRNAs and their
target genes, we are interested in exploring a statistical model to
capture the relationship. With this estimated statistical model, we can
predict potential target genes of a miRNA for further experimental
validation. Due to the high cost of experimentation, we expect to
find a reasonable amount of potential targets for further experi-
mental validation in finding the true targets. Therefore, establishing
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an efficient and simple method to reduce the false discovery rate
or negative rate of the target prediction is an essential issue. In
addition to predicting miRNA targets, many studies focus on
constructing miRNA-regulated gene networks to explore miRNA-
mRNA regulatory relatinships such as CoMeTa tool (Gennarino
et al., 2012; Le et al., 2013). In this study, we do not deeply discuss
the network analysis because we manily focus on the target precition
problem.

Since the true biological model, which can capture the expression
data relationship between target genes and miRNAs, may be very
complicated, it is hard to build the true model. A feasible way is to
approximate the relationship by a linear regression model although a
linear model may not really well fit the data. In a regression model,
the coefficient of determination, denoted as R2, with value between
0 and 1 is a criterion used to evaluate the fitness of the model to the
data (Buse, 1973; Cameron and Windmeijer, 1997). A model with a
larger R2 is preferable to be used to fit the data. Since in real
applications, the biological relationship cannot be characterized by a
linear function, the R2 based on a linear model to fit the data might
be low. RRSM, which is proposed to overcome this disadvantage of
the R2 criterion, is successfully used to predict potential targets.
Nevertheless, the threshold selection is a main issue in adopting
RRSM to select the potential targets. The false discovery rate and
the false negative rate of the prediction results strongly depend on
the threshold selection. To provide a more depth investigation of the
threshold selection, in this study, we focus on exploring the theore-
tical property of the RRSM, and then we base on the established
property to propose a more reliable method to select the thresholds
of RRSM.

In the previous studies, the fixed threshold criterion was adopted
in RRSM (Wang and Li, 2009; Hsieh and Wang, 2011; Wang et al.,
2011). The procedure of RRSM is to compare two different R2 values
with respect to two different linear models. We call that one is a full
model and the other one is a reduced model. The explanatory
variables in the reduced model are in a subset of the explanatory
variables in the full model. The ratio of the R2 value with respect to
the reduced model to the R2 value of the full model is a relative R
squared value. When the relative R squared value is greater than a
threshold, we select the targets corresponding to the reduced model
as the potential targets. For a miRNA or a transcription factor, to
predict target genes, Wang and Li (2009), Hsieh andWang (2011) and
Wang et al., (2011) used the same threshold for the relative R squared
value when building regression models for different genes. It is worth
noting that in these studies although the goal is to find the target
genes of a miRNA, the RRSM is to build a regression model for each
gene with gene expression values as the response variables and the
miRNA expression values as explanatory variables. The reason is that
the expression of a gene may be regulated by particular miRNAs, but
it is not that the expression of a miRNA is regulated by particular
genes. Therefore, a regression model is build for each gene with
different miRNAs as explanatory variables. In the previous studies,
the threshold is set to be the same (fixed) for each regression model,
which does not depend on the characteristic of a gene (Wang and Li,
2009; Hsieh and Wang, 2011). In this study, we propose a data-
dependent threshold selection method based on the distribution of
the relative R squared statistic, which is shown to significantly
improve the prediction results of RRSM with a fixed (data-indepen-
dent) threshold criterion from a simulation study and miRNA data
analysis.

2. Results

In this section, we review the RRSM procedure with a data-
independent threshold, and propose the procedure for RRSM with
a data-dependent threshold.

2.1. Matrix form for RRSM

The datasets we used in this study are the mRNA and miRNA
expression data for 114 human miRNAs and 16 063 mRNAs across
a mixture of 88 normal and cancerous tissue samples common to
the two datasets used in Huang et al. (2007a) and Hsieh and Wang
(2011). To investigate the theoretical property of the relative R
squared method, we represent the relative R squared method in
Wang and Li (2009) with a matrix form.

Let yj denote the expression data of a mRNA in the jth tissue
and let xji denote the expression data of the ith miRNA in the jth
tissue, where j¼1,…,n and i¼1,…,p.

Full model (Ω):

yj ¼ b0xj0þb1xj1þb2xj2þ⋯þbpxjpþεj; j¼ 1;2;…;n

or
Y ¼XΩβΩþε ð1Þ

where Y¼ ðy1; y2;…; ynÞT is the response variable and
xi ¼ ðx1i;…; xniÞT ; i¼ 1;…; pis the ith explanatory variable and
x0 ¼ ðx10;…; xn0ÞT ¼ ð1;…;1ÞT is a constant term. βΩ ¼ ðb0;…; bpÞ
are regression parameters, and ε¼ ðε1;…; εnÞT is the error term
distributed as a multivariate normal distribution Nð0;s2InÞ. Let
xi ¼ ðx1i;…; xniÞT ; i¼ 1;…; p be the ith explanatory variable and
x0 ¼ ðx10;…; xn0ÞT ¼ ð1;…;1ÞT be a constant term. Under the model
(1), the least squared estimator for βΩ is β̂Ω ¼ ðb̂0; b̂1;…;

b̂pÞT ¼ ðXT
ΩXΩÞ�1XT

ΩY, and let ŶΩ ¼XΩβ̂Ω. The R2 value of the
model (1) is defined as R2

Ω ¼ SSRΩ=SST , where SST ¼ jjY�Y jj2 is the
total sum of squares, SSRΩ ¼ jjŶΩ�Yjj2 is the regression sum of
squares and Y is the mean of y1; y2;…; yn. The goal of RRSM is
to find high-confidence explanatory variables such that it can
significantly affect the response variables. The first step of RRSM is
to find p-values for testing H0i : bi ¼ 0; i¼ 1;…; p. For a fixed i, the
p-value for testing the null hypothesis based on the estimator β̂Ω
is defined

PrðjW jZ b̂i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðb̂iÞ

q
Þ; ð2Þ

where W denotes the t distribution with degrees of freedom
n�p�1 and varðb̂iÞ denotes the variance of the estimator b̂i (Wang
and Li, 2009). Note that varðb̂iÞ can be approximated by the ith
diagonal element of ðXΩ

TXΩÞ�1ŝ2 which is due to the fact that the
estimator β̂Ω is distributed as a normal distribution NðβΩ;
ðXΩ

TXΩ Þ�1s2Þ and ŝ2 ¼ jjY�ŶΩjj2=ðn�p�1Þ is an estimator of s2.
Here, we set a threshold p0 and select an explanatory variable xi as
a potential explanatory variable if the corresponding p-value for
testing the null hypothesis H0i

: bi ¼ 0 is less than threshold p0.
Assume that there are k ðkrpÞ variables fxη1 ; xη2 ;…;xηk g, η1o
η2o⋯oηk which have been selected by the p-value criterion.
Then we rebuild the regression model using these k explanatory
variables as follows.

Reduced model (ω):

yj ¼ bn

0xjη0 þbn

1xjη1 þbn

2xjη2 þ⋯þbn

kxjηk þεnj ; j¼ 1;2;…;n

or
Y ¼Xωβωþεn ð3Þ

where xη0 ¼ ðx1η0 ;…; xnη0 ÞT ¼ ð1;…;1ÞT is the constant term and
εn ¼ ðεn1;…; εnnÞT is the error term distributed as a multivariate
normal distribution Nð0;s2InÞ. In model (3), the least squared error
estimator is β̂ω ¼ ðb̂n

0; b̂
n

1;…; b̂
n

kÞT ¼ ðXT
ωXωÞ�1XT

ωY, where Xω ¼
ðxjηi Þn�ðkþ1Þ. Let Ŷω ¼Xωβ̂ω. We calculate the R2 value with respect
to model (3), say R2

ω, where R2
ω ¼ SSRω=SST and SSRω ¼ jjŶω�Y jj2.

The ratio of R2
ω to R2

Ω, R
2
ω=R

2
Ω, which is defined as the relative

R squared value (Wang and Li, 2009). Then we set a threshold
for R2

ω=R
2
Ω, say s. If R2

ω=R
2
Ω is larger than s, the variables

fxη1 ; xη2 ;…; xηk g are selected. Otherwise, we do not select any
variable. Since RRSM considers the criterion of the ratio of two
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R2 values, it adopts a relative statistical viewpoint instead of an
absolute statistical viewpoint to select high-confidence explana-
tory variables. It is worth mentioning that RRSM is not only
applied to the linear regression but it also can be applied to more
complicated models.

2.2. Data-dependent threshold selection

In the previous microarray data studies for RRSM, for each
gene, the threshold ðp0; sÞ in selecting targets of the regression
model is set to be fixed. That is, p0 and s are set to be the same for
all genes. However, a more flexible criterion is to set the threshold
such that it depends on the data, i.e. the expression profile of the
gene. But how to set a reasonable data-dependent threshold is a
challenging task. In this study, we investigate the distribution of
the relative R squared statistic and use it to derive a data-
dependent threshold for RRSM. The details for the theoretical
derivation of the RRSM procedure with a data-dependent thresh-
old are given in the Method section. The steps of a data-dependent
threshold for RRSM are briefly described in Procedure 1 and Fig. 1.

Procedure 1:. The steps of RRSM with a data-dependent
threshold.

Step 1: Build a regression model (1).
Step 2: Set p0 as a critical point of p-value. The variable xi is
selected if PrðjWjZ b̂i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðb̂iÞ

q
Þrp0, and the selected variables

are denoted as
fxη1 ; xη2 ;…; xηk g:

Step 3: Base on fxη1 ; xη2 ;…; xηk g to build a new regression
model (3).

Step 4: Calculate the R squared values of model (1) and (3), say
R2
Ω and R2

ω, respectively, and calculate the relative R squared
value, R2

ω=R
2
Ω.

Step 5: Choose a significant level α. The variables fxη1 ; xη2 ;…;

xηk g are regarded as significant variables to affect the response
variable if R2

ω=R
2
Ω4tðn; p; k;α;R2

ΩÞ,
where

tðn;p; k;α;R2
ΩÞ ¼ 1�ðFαp�k;n�p�1 � ðp�kÞÞ=ðn�p�1Þ � ð1=R2

Ω�1Þ: ð5Þ
and Fαν1 ;ν2 denotes the upper α cut of point of a F distribution
with degrees of freedom ν1 and ν2.

The difference between the RRSM with a fixed threshold and
RRSM with a data-dependent threshold is that the former is to set
a constant threshold s and the latter adopts a data-dependent
threshold tðn; p; k;α;R2

ΩÞ which depends on the R2
Ω value. The code

for RRSM with a data-dependent threshold can be download at
http://www.stat.nctu.edu.tw/�hwang/website_wang%20new.
htm. In addition, a total of 1536 high-confidence targets (Table S1
in the supplementary materials) were discovered in this study and
we list targets associating with corresponding p-values. It is worth
noting that there are 205 high-confidence targets with p-value less
than 0.05 which can be ranked to be more potential targets than
the other 1331 selected targets.

3. Simulation

To evaluate the performance of RRSM with a data-dependent
threshold, we conduct a simulation study to compare it with the
RRSM proposed in the previous study. The two methods are
evaluated in terms of their false negative rates and false positive
rates. The false negative rate of a method is defined as v1=h, where
h denotes the number of true explanatory variables, and v1 is the
number of the true explanatory variables which are not selected
by the method among the h true explanatory variables. The false
positive rate of a method is defined to be the ratio of v2=ðr�hÞ,
where r denotes the number of all explanatory variables, and v2
denotes the number of variables selected by this method which
are not the true explanatory variables.

The steps of the simulation study are described as follows. We
first generate h explanatory variables xi ¼ ðx1i;…; xniÞT , i¼ 1;2;
…;h, and then generate a sample yj; j¼ 1;…;n from a given
linear model (3) based on these h explanatory variables. After that,
we generate r�h noise explanatory variables, xn

i ¼ ðxn1i;…;

xnniÞT ; i¼ 1;…; r�h. With the sample y1;…; yn, fx1;…; xhg and
fxn

1;…; xn

r�hg, we follow the RRSM to select explanatory variables.
After that we calculate the false negative rates and the false
positive rates of the two methods. We replicate 100 simulation
process, and then calculate the average of their false negative rates
and the false positive rates.

We present the simulation results for the cases of varying a
term of n; p or k when the other two terms are fixed. Figs. 2–4
present the simulation results of the false negative rates and the
false positive rates of the two methods for the cases of different n,
p or k, respectively. In this study, the threshold s for RRSM with a
fixed threshold is set to be 0.95 and the significant level α for
RRSM with a data-dependent threshold is set to be 0.05. The
threshold p0 for both RRSMs are selected to be around 1=3 for the
most cases or in the range of (0.1,0.6).

Fig. 2 shows that results of n¼ 50;100;150;200;250 and 300
when p¼ 15 and k¼ 5. The false positive rates and the false
negative rates of RRSM with a fixed threshold are significantly
larger than those of RRSM with a data-dependent threshold. In
addition, the false positive rates and false negative rates bothFig. 1. The flowchart of the procedure for a data-dependent threshold for RRSM.
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decrease as the sample size increases. It reveals that the false
positive rates and the false negative rates of RRSM can be reduced
when the sample size is large enough.

Fig. 3 presents the results for different p when n and k are 100
and 15, respectively. The comparison results are the same as the
case in Fig. 2 that both false rates of RRSM with a data-dependent
threshold are lower than those of RRSM with a fixed threshold.
It is worth noting that the false negative rate increases as the
number of variables, r, increases. It is due to the fact that noise
level increases when r increases, but h is fixed. Since the noise

level increases, the chance of the true explanatory variables which
are not selected by the method increases. This fact might cause the
increase of the false negative rate.

The results for the last case for different k are presented in
Fig. 4. The RRSM with a data-dependent threshold still outper-
forms the RRSM with a fixed threshold. It is worth noting that the
false negative rate decreases as the number of true explanatory
variables h increases. It is due to the fact that the noise level
decreases when h increases, but r is fixed. Since the noise level
decreases, the number of the selected variables which are the not
true explanatory variables might decrease. In this case, v1
decreases and h increases which causes the decrease of the false
negative rate. The above simulation results reveal that RRSM with
a data-dependent threshold is a more feasible approach for finding
true explanatory variables.

4. Data analysis

In this section, we analyze microarray expression profiling of
miRNA and mRNA in Huang et al. (2007a) and Hsieh and Wang
(2011) to show the advantage of RRSM with a data-dependent
threshold. The goal of analyzing these datasets is to find the
mRNAs regulated by a specific miRNA. Since there are too many
possible pairs (114� 16 063 pairs) of miRNA and mRNA among
114 human miRNAs and 16 063 mRNAs across 88 tissues, it is
inefficient to directly consider all possible pairs. There are 6387
potential target pairs filtered by TargetScanS (Huang et al., 2007a;
Hsieh and Wang, 2011). TargetScanS is a prediction tool by
searching for conserved 8mer and 7mer sites that match the seed
region of miRNAs (Grimson et al., 2007; Lewis et al., 2005;
Friedman et al., 2009). Although the potential target pairs are
reduced to 6387 pairs, there are still many false positive targets in
the 6387 pairs. Hsieh and Wang (2011) adopted RRSM with a fixed
threshold to find the high-confidence interactions. In this study,
we apply the RRSM with a data-dependent threshold to find the
high-confidence interactions and compared the result with Hsieh
and Wang (2011).

Fig. 2. The false negative rates (dashed lines) and false positive rate (solid lines) of
two RRSMs for p¼ 15, k¼ 5 and n¼ 50, 100, 150, 200, 250 and 300.

Fig. 3. The false negative rates (dashed lines) and false positive rate (solid lines) of
two RRSMs for n¼ 100, k¼ 5 and p¼ 15, 20, 25, 30, 35 and 40.

Fig. 4. The false negative rates (dashed lines) and false positive rate (solid lines) of
two RRSMs for n¼ 100, p¼ 50 and k¼ 5, 10, 15, 20, 25 and 30.
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To compare the two methods, by the criterion used in Hsieh
and Wang (2011), we investigate the accuracies of both methods in
terms of the number of experimentally validated genes being
selected. The experimentally validated genes can be obtained from
TarBase (Papadopoulos et al., 2009) and miRTarBase (Hsu et al.,
2011). To compare the performances of these methods, we
examine the accuracy of these methods by comparing their
selected target genes with the experimentally confirmed genes
in TarBase and miRTarBase. For the 6387 potential targets, there
are only 24 and 138 confirmed genes in TarBase and miRTarBase,
respectively.

To compare the methods, we use these criteria to select one-
fourth of genes (around 1600 genes) from the 6387 potential
targets because Huang et al. (2007a,b), Hsieh and Wang (2011) and
Wang and Li (2009) compared different methods using one-fourth
of genes. To make a more objective comparison, the results for
different thresholds of each method such that each of them has
better performance are presented.

Table 1 presents the results for different methods under
different thresholds. There are 8–10 interactions (experimentally
validated genes) in TarBase selected by RRSM with a fixed thresh-
old, and there are 11–13 interactions in TarBase selected by RRSM
with a data-dependent threshold. RRSM with a data-dependent
threshold selects more interactions than RRSM with a fixed
threshold. In addition, we also compare the selecting results
through the database miRTarBase. There are 20–26 interactions
selected by RRSM with a fixed threshold, and 28–29 interactions
selected by RRSM with a data-dependent threshold, respectively.
It shows that RRSM with a data-dependent threshold is better
than RRSM with a fixed threshold applying in these datasets for
predicting high-confidence targets.

Furthermore, to make more comprehensive comparisons for
the two RRSMs, we apply these two methods to another miRNA
target prediction tool by Huang et al. (2007a) and mouse expres-
sion profiles. Huang et al. (2007a) adopted a prediction tool,
GenMiRþþ , to select the 1597 high-confidence targets among
the same data set used in the above analysis. There are only four
interactions in TarBase among these 1597 high-confidence targets.
We apply the RRSM with a fixed threshold and RRSM with a data-
dependent threshold to 1597 high-confidence targets, respectively.
Table 2 shows the comparison results for different thresholds.
To cover the four interactions in TarBase, we found that the RRSM
with a fixed threshold has to select more high-confidence targets
than those selected by the RRSM with a data-dependent threshold.
Table 2 shows that the selected numbers of high-confidence
targets for RRSM with a data-dependent threshold are 617, 662
and 680 for some thresholds. However, the RRSM with a fixed

threshold is necessary to select 802, 810 and 883 high-confidence
targets to cover these four interactions. Thus, the RRSM with a
data-dependent threshold has lower false discovery rate than the
RRSM with a data-independent threshold for this data anaysis.

In addition to analyzing human miRNA expression profiles in
the above, we apply the RRSMs to mouse data. Wang and Li (2009)
proposed the RRSM with a fixed threshold for mouse miRNA target
prediction and found that there are two Tarbase interactions in
1770 potential targets; the relationship between miR-181a and
BCL2 mRNA and the relationship between miR-181a and HOXA11
mRNA. They used thresholds p0 ¼ 0:47 and s¼ 0:995, which leads
to 448 high-confidence targets with one interaction in TarBase.
For covering these two interactions in TarBase, they relaxed
thresholds to p0 ¼ 0:67 and s¼ 0:9999, which leads to 715 high-
confidence targets. However, we adopt the RRSM with a data-
dependent threshold by using different thresholds which lead to
177, 236 and 260 high-confidence targets with these two interac-
tions in TarBase. The comparisons between the two methods for
mouse data set are presented in Table 3.

In summary, we apply the RRSM with a fixed threshold and
RRSM with a data-dependent threshold in different datasets and
prediciton methods. These results reveal that RRSM with a data-
dependent threshold is more powerful than the RRSM with a fixed
threshold for predicting high-confidence targets.

5. Discussion

In this study, we propose a data-dependent threshold selection
method based on the distribution of the relative R squared statistic
to provide a feasible rule for selecting useful thresholds for the
RRSM method. The thresholds of RRSM are set to be the same for
each data in the previous study, which do not depend on the
characteristic of a gene. We show that a data-dependent threshold
criterion leads to more convincing results in the simulation study
and real data analysis. From the data analysis, the RRSM with the
data-dependent threshold is shown to predict more valid targets
than RRSM with a fixed threshold. Therefore, we conclude that the
proposed threshold selection criterion can benefit the variable
selection in biology or other related analysis.

6. Methods

In order to derive our main theorem, we recall some useful
properties of a linear model and define some notations first. We
consider a simpler case to simplify the model assumptions that let
fxη0 ; xη1 ;…; xηk g in reduced model (3) be the first kþ1 columns of
fx0; x1;…; xpg in full model (1). We consider a null hypothesis

Table 1
Interaction numbers in TarBase and miRTarBase selected by RRSM with a fixed
threshold or RRSM with a data-dependent threshold for human expression profiles.

Method Number of
high-confidence
targets

Number of
interactions in
TarBase

Number of
interactions in
miRTarBase

RRSM with a
fixed threshold

s¼ 0:995, p0 ¼ 0:77 1559 10 26
s¼ 0:995, p0 ¼ 0:75 1342 9 26
s¼ 0:990, p0 ¼ 0:72 1485 8 25
s¼ 0:950, p0 ¼ 0:60 1388 8 20
s¼ 0:900, p0 ¼ 0:57 1519 8 20
RRSM with a data-
dependent
threshold

α¼ 0:99, p0 ¼ 0:583 1536 13 29
α¼ 0:88, p0 ¼ 0:4 1568 11 28

Table 2
The high-confidence target numbers selected by two RRSMs in applying to the
predicted results by GenMiRþþ for covering four interactions in TarBase under
different thresholds.

Method Number of high-
confidence targets

Number of interactions
in TarBase

GenMiRþþ 1597 4
RRSM with a fixed
threshold

s¼ 0:99, p0 ¼ 0:72 802 4
s¼ 0:995, p0 ¼ 0:77 810 4
s¼ 0:99, p0 ¼ 0:75 883 4
RRSM with a data-
dependent threshold

α¼ 0:97, p0 ¼ 0:72 617 4
α¼ 0:99, p0 ¼ 0:75 662 4
α¼ 0:995, p0 ¼ 0:77 680 4
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H0 : bkþ1 ¼ bkþ2 ¼⋯¼ bp ¼ 0. Then under the null hypothesis, the
full model (1) is the reduced model (3). The hypothesis can be
expressed as H0 : AβΩ ¼ 0, where A¼ ðaijÞðp�kÞ�ðpþ1Þ is a ðp�kÞ �
ðpþ1Þ matrix, and

aij ¼
1 j¼ iþkþ1 for i¼ 1;2;…; p�k

0 otherwise

�

Before giving our main theorem, we introduce a useful cor-
ollary (Seber and Lee, 2003, Theorem 4.1).

Corollary 1. To test H0 : AβΩ ¼ 0, under H0, the statistic

ððSSEω�SSEΩÞ � ðn�p�1ÞÞ=ðSSEΩ � ðp�kÞÞ
is distributed as Fp�k;n�p�1, where Fp�k;n�p�1 denotes the F distribu-
tion with p�k and n�p�1 degrees of freedom, and SSEΩ ¼ ‖Y�ŶΩ‖2
and SSEω ¼ ‖Y�Ŷω‖2 are the residual sums of squares of the full
model (1) and reduced model (3), respectively.

Based on Corollary 1, we derive the distribution of the relative
R squared statistic in Theorem 1.

Theorem 1. Under models (1) and (3), for kop, to test

H0 : AβΩ ¼ 0 vs: H1 : AβΩa0;

we have

ððR2
Ω�R2

ωÞ � ðn�p�1ÞÞ=ðð1�R2
ΩÞ � ðp�kÞÞ � Fp�k;n�p�1:

Proof. By definition and properties of linear regression model
(Seber and Lee, 2003), we have

R2
Ω ¼ SSRΩ=SST and R2

ω ¼ SSRω=SST

and

SSRΩ ¼ SST�SSEΩ and SSRω ¼ SST�SSEω:

The numerator of ðR2
Ω�R2

ωÞ=ð1�R2
ΩÞ can be rewritten as

R2
Ω�R2

ω ¼ ðSSRΩ�SSRωÞ=SST ¼ ððSST�SSEΩÞ�ðSST�SSEωÞÞ=SST
¼ ðSSEω�SSEΩÞ=SST

and the denominator of ðR2
Ω�R2

ωÞ=ð1�R2
ΩÞ can be rewritten as

1�R2
Ω ¼ 1�SSRΩ=SST ¼ ðSST�SSRΩÞ=SST ¼ SSEΩ=SST :

Consequently, we have

ðR2
Ω�R2

ωÞ=ð1�R2
ΩÞ ¼ ððSSEω�SSEΩÞ=SSTÞ=ðSSEΩ=SSTÞ ¼ ðSSEω�SSEΩÞ=SSEΩ:

If both the numerator and the denominator of ðSSEω�SSEΩÞ=
SSEΩ are divided by s2, we have

ðSSEω�SSEΩÞ=s2 � χ2
½n�ðkþ1Þ��½n�ðpþ1Þ� � χ2

p�k

and

SSEΩ=s
2 � χ2

n�p�1;

where χ2
ξ denotes the chi squared distribution with ξ degrees of

freedom (Seber and Lee, 2003). Under H0, by Corollary 1 we have

ððSSEω�SSEΩÞ=s2Þ=ðSSEΩ=s2Þ � ðn�p�1Þ=ðp�kÞ
¼ ðSSEω�SSEΩÞ=SSEΩ � ðn�p�1Þ=ðp�kÞ � Fp�k;n�p�1:

Then the proof is complete.

We will use the property in Theorem 1 to derive a data-
dependent threshold for RRSM. Note that ðR2

Ω�R2
ωÞ=ð1�R2

ΩÞ can
be written as

ðR2
Ω�R2

ωÞ=ð1�R2
ΩÞ ¼ ð1�R2

ω=R
2
ΩÞ=ð1=R2

Ω�1Þ;
where R2

ω=R
2
Ω is the relative R squared value. Define

F ¼ ð1�R2
ω=R

2
ΩÞ=ð1=R2

Ω�1Þ � ðn�p�1Þ=ðp�kÞ
According to Theorem 1, to test H0 : AβΩ ¼ 0, we calculate F

value and reject H0 at level α of significance if

FZFαp�k;n�p�1; ð4Þ

For a fixed R2
Ω value, a larger relative R squared value leads to a

smaller F value, which results that we do not reject the hypothesis
when the relative R squared value is large. Therefore, by rewritting
Eq. (4), we obtain a test based on the relative R squared statistic in
Theorem 2.

Theorem 2. Under models (1) and (3), for kop, to test

H0 : AβΩ ¼ 0 vs: H1 : AβΩa0;

a level α test based on the critical (reject) region derived by (4) is

φ¼ 1 if R2
ω=R

2
Ωrtðn; p; k;α;R2

ΩÞ
0 otherwise

(
;

where

tðn; p; k;α;R2
ΩÞ ¼ 1�ðFαp�k;n�p�1 � ðp�kÞÞ=ðn�p�1Þ � ð1=R2

Ω�1Þ: ð5Þ

The value ð5Þ in Theorem 2 is a data-dependent cut off point of
the test for testing H0 based on the relative R squared statistic
R2
ω=R

2
Ω. Therefore, the value ð5Þ is suggested to be a data-

dependent threshold of the relative R squared procedure.
Combining the above results, we propose a procedure of the

RRSM by implementing a data-dependent threshold.
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